打印

[转帖] 【科技】DeforGAN:用GAN实现星际争霸开全图外挂![23P]

0

【科技】DeforGAN:用GAN实现星际争霸开全图外挂![23P]

机器之心Pro

2020-04-02 12:15  

选自arXiv

作者:Yonghyun Jeong等

机器之心编译

参与:李诗萌、Geek AI


对于广大星际争霸迷来说,地图全开作弊代码「Black sheep wall」应该是再熟悉不过了!如何根据现有状态预测未知信息是博弈过程中举足轻重的一环。日前,韩国三星公司的研究人员在星际争霸游戏中,将预测战争迷雾背后的作战单位信息建模为了一个部分可观察马尔科夫决策过程,并使用基于 GAN 的方法实现了当前性能最佳的战争迷雾去雾算法。



•论文地址:https://arxiv.org/abs/2003.01927
•项目地址:https://github.com/TeamSAIDA/DefogGAN

本文提出了 DefogGAN,这是一种推断即时战略(Real-Time Strategy,RTS)游戏中战争迷雾后的隐藏信息状态的生成式方法。给定一个部分可观测的状态,DefogGAN 可以将游戏的去雾图像作为预测信息生成。这样的信息可以创造战略智能体。DefogGAN 是一种条件 GAN 的变体,它使用了金字塔重建损失,从而在多个特征分辨率尺度上进行优化。本文使用一个大型专业的星际争霸录像数据集验证了 DefogGAN。结果表明 DefogGAN 可以预测敌方建筑物和作战单位,准确率与职业玩家相当,并且比当前最佳的去雾模型的性能更好。

AlphaGo 的成功为人工智能在游戏中的应用(Game AI)带来了极大的关注。通过深度强化学习训练的智能体可以在国际象棋、围棋和 Atari 等经典游戏中轻而易举地胜过人类。随着任务环境越来越复杂,实时战略游戏(RTS)成为了一种评估最先进的学习算法的方式。如今,Game AI 为机器学习带来了全新的机遇和挑战。开发 Game AI 的好处十分广泛,不仅限于游戏应用中。在科学中应用智能体(例如,在有机化学领域中预测的蛋白质折叠)和企业的商业服务(例如,天机器人)的探索,使 Game AI 正走向一个新的时代。

在本文中,作者提出的 DefogGAN 采用生成式方方法补全因战争迷雾造成的显示给玩家的不完全信息。本文使用星际争霸作为实验场景——这是一款 RTS 游戏,游戏中有三个均衡的种族供玩家选择,玩家要建立完全不同的游戏风格和战略。在发行逾二十年后,星际争霸依然是一款非常受欢迎的电子竞技游戏。为了实现让 Game AI 超越高水平人类玩家的艰巨目标,本文作者使用超过 30,000 场的职业玩家的游戏录像训练了 DefogGAN。在星际争霸中,这样的目标是很难实现的。因为星际争霸长期以来一直广受欢迎,玩家们开发出了各种各样的成熟的游戏策略,除此之外,在电竞现场和暴雪战网(Battle.net)中玩家们还广泛使用了微操技术。



图 1:DefogGAN 预测值和真实值的比较。友方和敌方单位在地图(黑色)上分别用绿色和红色表示。DefogGAN 预测出了观察不到的敌方单位。

战争迷雾指在某个没有友方单位的区域中,不能获得视野和信息,这样的区域包括所有之前探索过但目前无人值守的区域。部分可观察马尔科夫决策过程(Partially Observable Markov Decision Process,POMDP)最适合描述战争迷雾问题。一般而言,POMDP 为真实世界中大多数有大量未观察到的变量的问题提供了一个实用的表达方式。对 Game AI 来说,解决部分可观察问题是提升性能的关键所在。事实上,许多现有的设计智能 Game AI 的方法都会遇到部分可观察问题。最近,生成模型被用来降低部分可观察问题的不确定性。利用生成模型的预测结果,智能体的性能得到了提升。然而,生成方法无法完全与顶尖的人类职业玩家的高水平侦察技术匹敌。

星际争霸为研究与 Game AI 相关的复杂 POMDP 问题提供了一个绝佳的平台。本文作者利用生成对抗网络,建立了 DefogGAN,它可以根据生成的逼真信息准确预测隐藏在战争迷雾中的对手的状态。根据经验,本文作者发现,GAN 比变分自编码器(Variational Autoencoder,VAE)生成的图像更逼真。为了生成去除战争迷雾的游戏状态,本文作者将原始的 GAN 生成器修改为编码器-解码器网络。

从原理上讲,DefogGAN 是条件 GAN 的变体。通过使用跳跃连接,DefogGAN 生成器利用根据编码器-解码器结构学习到的残差进行训练。除了 GAN 的对抗损失,本文作者还设置了有雾和去雾游戏状态间的重建损失,来强调单位位置和数量的回归。本文的贡献如下:
•开发了 DefogGAN,可以解析有战争迷雾的游戏状态,得到有用的获胜信息。DefogGAN 是最早的基于 GAN 处理星际争霸中的战争迷雾问题的方法;
•利用跳跃连接进行残差学习,在不引入任何循环结构的情况下,DefogGAN 以前馈的方式包含过去的信息(序列),更适用于实时使用的情况;
•本文作者在模型简化实验和其它设置(如针对提取出的游戏片段和当前最先进的去雾策略进行测试)中,对 DefogGAN 进行了实证验证。

本文涉及的数据集、源代码和预训练网络对公众开放,可以在线访问。

在 t 时刻,DefogGAN 根据部分可观察(有雾)状态,生成了完全的观察(去雾)状态。在星际争霸中,完全观察状态包括在给定时间下,所有友方和敌方单元的确切位置。图 2 展示了 DefogGAN 的架构。本文作者对当前的部分可观察状态的输入计算得到的特征图进行求和池化。在过去的观测结果的特征图进入生成器前,要和当前状态累积并拼接。本文作者用预测的可观察状态和实际的完全观察状态间的重建损失和判别器的对抗损失训练生成器。



图 2:DefogGAN 的架构概览。

DefogGAN 的生成器采用了 VGG 网络的风格。卷积核的大小固定为 3*3。当特征图大小减少一半时,卷积核的数量增加一倍。DefogGAN 没有使用任何空间池化层或全连接层,而是用了卷积层来保留从输入到输出的空间信息。

DefogGAN 的生成器包括编码器、解码器和通道组合层。编码器采用 32*32*82 的输入,利用卷积神经网络(Convolutional Neural Networks,CNN)提取出隐藏在战争迷雾中的语义特征。每个卷积层都用了批量归一化和修正线性单元(ReLU)来实现非线性转换。

解码器利用从语义上提取出的编码器特征生成预测数据。解码过程将数据重构为高维数据,再利用转置卷积运算完成推断。解码器产生的输出尺寸与输入相同。考虑到因初始通道尺寸大导致的学习速度大,我们没有使用像 ResNet 那么多的卷积层。



表 1:x¯_t 和 x˜_t 的混淆矩阵。使用到的测试数据超过 10,000 帧,表中为平均值。

表 1 总结了 DefogGAN 输入-输出的统计信息,包括部分可观察状态 x¯_t、累积的部分可观察状态 x˜_t,和真实值 y_t。平均而言,在部分可观察状态中可以看到 54% 的单位,在累积的部分可观察状态中可以看到 83% 的单位。注意,累积的部分可观察状态造成了第一类型错误(假阳性),因为累积状态包含此刻已经不再符合实际情况的、移动的单元之前的位置。在给定这样的输出空间时,去雾问题需要在可能的 67,584(32*32*66)个空间中平均选出 141 个空间。



图 4:预测结果的可视化。最左侧是累积的部分可观察状态(x˜_t)。第二列是部分可观察状态 x¯_t。第三列是 CED(当前最佳去雾器)的预测结果。4-7 列分别是 DCGAN、BEGAN、WGAN-GP 和 cWGAN 的生成结果。DefogGAN 的结果呈现在第八列,最后一列是真实值。行表示用于评估的录像。



表 4:DefogGAN 和其它模型的准确率比较结果。

图 4 中的可视化结果可以有效地解释 DefogGAN 的预测性能。随机选择四组录像,给出每个模型预测的、去雾后的完全观察状态。例如,在录像 4 中,在部分可观察状态 x¯_t 的右下角看不到红色的敌方单位。同时,在累积的部分可观察状态 x˜_t 中只能看到敌方单位的子集。同时使用观察结果和累积观察结果,DefogGAN 可以生成的完全可观察状态 y_t 看起来和真实值非常相似。CED 也生成相当可信的完整状态,但 DefogGAN 生成了更准确的结果。WGAN-GP 在没有重建损失的情况下也生成了可信的完整状态,但有生成假阳性(低精度)结果的倾向。cWGAN(一种使用了重建损失的 WGAN-GP 变体)似乎降低了假阳性率,但 DefogGAN 的预测结果仍然更好。

声明:该文观点仅代表作者本人,搜狐号系信息发布平台,搜狐仅提供信息存储空间服务。



人类一败涂地?DeepMind推出Agent57,在所有雅达利游戏上超越人类玩家  

机器之心Pro

2020-04-01 12:24  

让单个智能体完成尽可能多的任务是 DeepMind 一直以来的研究目标,也被该公司视为迈向通用人工智能的必经之路。去年,DeepMind 推出的 MuZero 在 51 款雅达利游戏中实现了超越人类的表现。时隔数月,DeepMind 在这一方向上更进一步,在 57 款雅达利游戏中全面超越人类,在这一领域尚属首次。



DeepMind 在最新发布的预印本论文和博客中介绍了这一进展。他们构建了一个名为 Agent57 的智能体,该智能体在街机学习环境(Arcade Learning Environment,ALE)数据集所有 57 个雅达利游戏中实现了超越人类的表现。

如果这一说法成立,Agent57 可以为构建更加强大的 AI 决策模型奠定基础。它还能够随着计算量的增加而扩展,训练时间越长,得分也越高。

论文链接:https://arxiv.org/pdf/2003.13350.pdf

57 款雅达利游戏

利用游戏来评估智能体性能是强化学习研究中的一个普遍做法。游戏中的环境是对真实环境的一种模拟,通常来说,智能体在游戏中能够应对的环境越复杂,它在真实环境中的适应能力也会越强。街机学习环境包含 57 款雅达利游戏,可以为强化学习智能体提供各种复杂挑战,因此被视为评估智能体通用能力的理想试验场。

为什么要选择雅达利游戏?原因有以下几点:

1. 足够多样化,可以评估智能体的泛化性能

2. 足够有趣,可以模拟在真实环境中可能遇到的情况;

3. 由一个独立的组织构建,可以避免实验偏见。

在雅达利游戏中,我们希望智能体能够在尽可能多的游戏中表现良好,对当前所处的游戏做出最少的假设,而且不使用特定于某个游戏的信息。

DeepMind 对雅达利游戏的挑战很早就开始了。2012 年,他们创建了 Deep Q-Network(DQN)算法来挑战雅达利的 57 种游戏,此后又经过了多次改进。但遗憾的是,经过改进的 DQN 也始终没有克服四种比较难的游戏:Montezuma's Revenge、Pitfall、Solaris 和 Skiing。此次新发布的 Agent57 改变了这一局面。



DQN 的改进历程(图片来源于 DeepMind 官方博客)

强化学习的挑战

为实现目前的 SOTA 表现,DeepMind 的 Agent57 使用强化学习算法,并同时运行在多台电脑上,这些 AI 赋能的智能体在环境中选择能够最大化奖赏的动作去执行。强化学习在电子游戏领域已经展现出了极大的潜力——OpenAI 的 OpenAI Five 和 DeepMind 的 AlphaStar RL 智能体分别打败了 99.4% 的 Dota 2 玩家和 99.8% 的星际 2 玩家。然而研究人员指出,这并不意味着目前的强化学习方法就无懈可击了。

RL 中存在长期信度分配(credit assignment)问题,也就是根据信度选取最能够产生之后好/坏结果的动作。当奖赏信号具有延迟并且信度分配需要跨越较长动作序列时,以上问题变得尤为困难。另外 RL 还存在探索和灾难性遗忘的问题。智能体在游戏中获得第一个正奖赏之前,可能需要执行上百个动作,并且智能体很容易被困在从随机数据里寻找规律的过程中,或当学习新的信息时突然忘记之前已学到的信息。

NGU(Never Give Up)是一种在两个层面上通过从内部产生固有奖赏来增强奖励信号的技术:在单个 episode 中的短期新颖激励和跨越多个 episode 的长期新颖激励。使用 episodic 记忆,NGU 学会了一系列用于探索和利用(exploring and exploiting)的策略,最终目标是利用习得策略获得游戏的最高得分。

为解决以上问题,DeepMind 团队在 NGU 基础上构建了新的 RL 算法。NGU 的缺陷之一为:其通过不同策略来收集相同数量的经验,而忽略了不同策略在学习过程中的贡献。与之不同的是,DeepMind 的实现将其探索策略贯穿在智能体的整个生命周期中,这使得智能体能够根据其所处的不同游戏有针对性地学习策略。

两种 AI 模型 元控制器:Agent 57实现最佳策略选择



Agent57 总体框架(图片来源于 DeepMind 官方博客)

至于 Agent57 的具体架构,它通过将众多 actor 馈入到学习器可以采样的一个中央存储库(经验回溯缓冲器),进而实现数据收集。该缓冲器包含定期剪枝的过渡序列,它们是在与独立、按优先级排列的游戏环境副本交互的 actor 进程中产生的。

DeepMind 团队使用两种不同的 AI 模型来近似每个状态动作的价值(state-action value),这些价值能够说明智能体利用给定策略来执行特定动作的好坏程度,这样就使得 Agent57 智能体可以适应与奖励相对应的均值与方差。他们还整合了一个可以在每个 actor 上独立运行的元控制器,从而可以在训练和评估时适应性地选择使用哪种策略。



Agent57 与其他算法的性能对比。图源:DeepMind。

研究者表示,这个元控制器具有以下两大优势:其一,得益于训练中的策略优先级选择,它可以使得 Agent57 分配更多的网络容量来更好地表征与手边任务最相关策略的状态行动值函数;其二,它以一种自然的方式在评估时选择最佳策略。

实验结果

为评估 Agent57 的性能,DeepMind 团队将这种算法与 MuZero、R2D2 和 NGU 等领先算法进行了对比。实践可知 MuZero 在全部 57 种游戏中达到了最高平均分(5661.84)和最高中值(2381.51),但也在 Venture 等游戏中表现很差,得分只到和随机策略相当的水平。

实际上,与 R2D2(96.93)和 MuZero(89.92)相比,Agent57 的总体表现上限更高(100),训练 50 亿帧即在 51 种游戏上超越了人类,训练 780 亿帧后在 Skiing 游戏上超越了人类。

随后研究人员分析了使用 meta-controller 的效果。与 R2D2 相比其性能可以提高近 20%,即使在 Solaris 和 Skiing 这种智能体需要收集长时间段信息才能学习所需反馈的长期回报游戏中,也有明显的效果。



谷歌在博客中表示:「Agent57 最终在所有基准测试集最困难的游戏中都超过了人类水平。但这并不意味着 Atari 研究的结束,我们不仅要关注数据效率,也需要关注总体表现……未来的主要改进可能会面向 Agent57 在探索、规划和信度分配上。」

足够惊艳,但有炒作之嫌?

在 DeepMind 推出 Agent57 之后,其宣称在所有雅达利游戏上超越人类的口号吸引了业内人士的关注。但也有网友提出了一些疑问。

下面这位网友对 DeepMind 宣称的「human」提出了质疑,认为 Agent57 超越的只是「average human」。他以《蒙提祖玛的复仇》为例,表示 Agent57 的分数(9352.01)只是超越了「average human」(4753.30),但并未打破人类玩家的记录 1219200.0。



另外,也有人指出了 DeepMind 的研究总是侧重于在雅达利等游戏上的性能表现,应该更多地关注现实世界的实际问题。



不过,人们对于从 DQN 到 Agent57 这一算法改进的「系统树」保持了肯定的态度。这一方向对于强化学习的进步究竟有多大意义,还需要时间来验证。



参考链接:

https://deepmind.com/blog/articl ... man-Atari-benchmark

https://venturebeat.com/2020/03/ ... lassic-atari-games/

声明:该文观点仅代表作者本人,搜狐号系信息发布平台,搜狐仅提供信息存储空间服务。



妄图一夜实现智能?这里有AI工业落地几乎必遇的「深坑」  

2020-04-02 12:15  

机器之心原创

作者:寓扬


如何从「深坑」中趟出一条工业 AI 之路?



疫情前,丰融出差去了趟重庆,跟一个客户谈工业大脑的方案。但项目还没来得及落地,疫情已经到来。

丰融是阿里云工业大脑首席解决方案架构师。春节期间,客户跟他电话沟通时,表示非常后悔,如果能早三个月接触,项目在春节前落地,如今就可以用工业大脑托管控制系统,无需再为招工发愁了。

疫情前期,可谓一工难求,甚至加钱员工都不愿意上工。这也在悄然改变产业方对于工业智能的看法。

在新基建七大领域中,有三个(大数据中心、人工智能、工业互联网)直接与智能制造相关,政策的引导与扶持,也为工业智能的落地与传统企业的智能化转型带来良好的契机。

自2017年以来,科研大牛、AI公司相继涌入工业领域。前不久,原腾讯杰出科学家、优图实验室 X-Lab 负责人贾佳亚离职创业,智能制造便是新公司发力的重要领域。

再往前翻,前阿里云机器智能首席科学家闵万里去年亦离职创业,成立北高峰资本,制造业也是三大聚焦方向之一。

然而,当每一位创业者、变革者拿起AI的工具,叩响工业之门时,扑面而来的是前所未有的挑战, 不仅有工业机理、领域知识的屏障,还有数据匮乏、模型泛化的挑战,更有传统企业的认知问题与信任缺乏。

面对「AI工业落地之深坑」,无论技术提供方,还是产业方,该如何走出?

透过阿里云工业大脑、库柏特科技、阿丘科技、杉数科技等在工业领域的实战,看他们如何从「深坑」中趟出一条工业智能之路。

01 企业几乎必遇的「深坑」

在清华大学人工智能实验室还未毕业时,黄耀就创办了阿丘科技,如今已在工业视觉赛道摸爬滚打了3年多。

创业以来,他一直聚焦解决工业检测问题,跑了不下100个工厂,看到了行业的无数坑,自身也踩过许多坑。



AI在工业检测领域的落地,如同「 技术成熟度曲线」所演绎的那样,整个过程中会存在一个低谷,黄耀称之为「 AI工业落地之深坑」。

这给了他们期望,推动公司投入更多资源进行AI项目导入。可是当进行大量样本测试时,尽管增加一定的数据可以让模型准确度进一步提升,比如达到90%,但瓶颈随之出现。

盲目增加数据,带来效果不一,有的缺陷项检测效果可能变好,有的准确率反而会下降。此时往往进入一个震荡期,工程师陷入其中而不得其解。

黄耀称, 这种情况在AI落地工业检测过程中遇到的概率高达90%以上,几乎是必遇的坑。

这一精度对工业而言,显然远远不够,AI难以达到上线要求。一些人开始失望,深度学习似乎远没有达到预期,许多AI项目逐渐搁置或边缘化。

这就是AI工业视觉落地之深坑。工业领域经常会出现一种情况,两张差不多的「缺陷」照片,一张能够被AI检测出来,另一张却没有,甚至不明显的被检测出来,明显的却被漏掉了。

此时,工程师需要的不是盲目增加数据,而是理性分析,找出问题的根源,优化直至模型达标上线。

正如库柏特创始人李淼所言,AI很大程度取决于数据和场景。



工业AI问题的解决不能只局限问题本身,更应该基于工业应用的一般流程,从全流程中去优化关键问题,这也是运营的关键。

在AI落地的流程中,每一个环节都值得推敲。李淼称,场景选择非常重要,不能太大,否则数据千奇百怪,也需要与大量行业专家沟通,合理定义问题的边界。

数据获取直接影响模型的效果,往往需要算法工程师到现场搜集,成本很高,并且对标注人员要求较高,需要懂得行业知识。

除了数据环节,后期的部署运维也需要耗费企业很多时间,进行实际样本测试,算法人员驻场观察,优化模型等。

从整个流程来看,中间的模型训练环节,反而不是AI公司的主要障碍,两端则耗费大量的时间成本与人力成本。

除了技术之坑、业务之坑,AI在工业落地中还面临领域知识之坑、公司定位之坑、商业模式之坑等等。

趟过一个个坑,这些公司完成了工业AI落地的「从0到1」,并实现一定规模的落地。透过他们的落地之路,更有助于我们思考,如何走出AI工业落地之深坑。

02 砍掉98%业务,不做什么更重要

波士顿动力机器人近乎花哨的表演,几乎每隔一段都会上演。但业内人都清楚,它离实际场景太远,并且难以商用。因为工业场景对机器人的精度要求极高,低于99.9%甚至无法商用,远非实验室可以达到。

在库柏特创始人李淼看来,机器人面临的挑战可分为3类:一是做不了,任务挑战太大,智能性不够;二是做不好,柔性不够,适应性差;还有一类是不想做,细分市场规模较小,盈利空间有限。

面对这些挑战,机器人公司一方面需要结合AI、传感器、工业软件等提升机器的智能性与适应性;另一方面,也需要结合技术成熟度与市场判断,选择合适的「主战场」。

创业近4年的李淼,趟过无数坑后,做的一个艰难决定便是做什么、不做什么,定位在哪里,选择什么商业模式。



库柏特定位于机器人操作系统,即给定一个真实任务,就可以从平台中找到对应的机器人系统,来解决这个问题。它跟机器人本体进行打通,针对系统集成商的需求,面向行业提供解决方案。

在最开始的AI落地中,ToB的创业公司往往会接触大量场景,打磨技术同时培养产品化能力。

2018年,库柏特广泛涉猎了3C电子、汽车零部件、食品、物流、医疗等众多领域,但绝大多数时间都用在了「脏活」(dirty work)和极端案例中。

「你费半天劲解决某个复杂技术难题后,可能只卖出去一套。一开始,对方说要一百套。」李淼曾谈道。

与集成商和设备商合作,还是直接面向终端客户提供服务,是一个艰难的商业选择。

李淼想要针对大的市场,实现机器人系统的产品化和规模化。但深耕在集成商与设备商之后,企业很难把握终端客户与市场的真实需求。

后来他决定转变,与渠道合作,直接与终端客户签订合同。既然决定铺渠道和规模化,他又砍掉98%不成熟的业务,将重心浓缩为一个平台(操作系统),两个领域(智能检测和柔性抓取)。

具体到一个场景,以香菇分拣为例,机器人系统的落地并不容易,数据就是尤为突出的一个挑战。

其业务逻辑为,送料系统运输香菇到检测环境,经由光源与相机,获取一张图像,传回智能控制器进行决策,除了判断优、良,还需要进行分类或剔除,分装到不同箱子中。

这一工作原来由人工完成,早期并无数据积淀,需要算法工程师现场采集一个个香菇数据,并进行标注。



但这一看似简单的活并不容易。香菇个体有近10个维度的差异,包括花色、菇腿、卷边、薄膜、残缺等,需要存储大量领域数据。

此外,香菇特征很丰富,每个厂家的分类标准也不同,这对算法带来很大挑战;并且这样一个实时性高的场景,对于算法的稳定性、决策的实时性也有更高要求。

目前库柏特的香菇分拣准确率可达90~95%,结合这一场景的特性,已能够实现规模商用。

李淼称,一台机器可替换4~6人,一条产线一般配5台,可替换20~30人。这些工人一年最少也要100万工资,而他们的产线目前售价75万,6~10个月客户就可以收回成本。

一直以来,行业似乎更看好AI在自动化程度更高、数据更好的汽车、3C等领域落地。从库柏特的案例来看,劳动密集型的食品加工业,无论材料或配方,往往变动更小,未尝不是一个好的AI落地方向。

03 问题导向,将AI和传统视觉结合

对于投身于工业视觉的阿丘科技而言,清晰认知AI能做什么,不能做什么,以及将AI算法和传统算法相结合去解决具体问题,是实现AI工业落地的重要一步。



阿丘科技创始人黄耀解释,2D/3D测量更强调精度,核心在于光学和传感器,对硬件要求高,不是AI的主战场。

定位分2D定位与3D定位,工业领域大部分定位场景不需要AI来做。定位应用中,AI在一些种类较多的场景价值较大,比如物流领域,有成千上万种SKU,场景较为复杂,适合AI来做定位、分拣等。

至于检测,他认为这是AI的主战场,「 AI在工业视觉的最大价值点,是解决复杂的缺陷检测,这属于行业难题,AI为它提供了新的可能性。」

而传统视觉检测存在一系列问题,比如难以解决复杂检测;存在过检误报过高,需要人工辅助复检;重光学、重算法,对集成商、设备公司要求高;并且后期算法补丁越来越大,维护难度大。

但黄耀坦言,国内能够做一定复杂度的缺陷检测的公司很少,很多做的属于轻量简单检测,比如判断有无等。

一个典型的证明是,在黄耀去过的上百家工厂中,2017年质检员约占10~20%,但到2019年质检员已占到超30%。随着自动化水平的提升,组装的工人在减少,但检测端,受限于技术等问题,仍需靠人力。

因为在复杂的缺陷检测中,每种产品可能存在数十种到数百种的缺陷类型,且每种缺陷存在多样的形态和变种,可能分布在产品的任何一个位置。此外缺陷的认知,还存在人员间的主观差异。这些都增加了问题的解决难度。

以一个小小的连接器接口为例,涉及到的缺陷种类相当多,包括划伤、脏污、溢胶等复杂缺陷。

除了界定好问题,有针对性的获取缺陷数据,并不断优化AI模型外,还需要以具体问题为导向,综合深度学习和传统视觉,发挥各自的长处,来解决问题。



针对胶圈间隙大、圆点超二分之一等精度测量问题,阿丘科技采用传统视觉算法解决;针对套筒溢胶、套筒粘胶等难以察觉、且可能分布任意位置等问题,他们主要采用AI算法检测。

不仅如此,针对金手指刮伤/粘胶、端子粘胶包胶等其他问题,阿丘科技会动态调整算法,或以AI检测为主,传统算法为辅,或传统算法为主,AI检测为辅,来解决实际问题。

目前阿丘科技的工业AI视觉平台已落地多个行业,数十个应用场景。

04 对行业理解越多,越充满敬畏之心

阿里云探索工业大脑已三年有余。

其主要思路是,把生产全流程的数据打通汇聚,构建工业数据中台,进而通过算法挖掘出数据的价值。简单来说就是「数据智能」。

互联网起家的阿里云,天然具备AI、大数据、云计算的沃土,这也是其最初探索工业领域的三项核心技术。

然而随着工业领域探索的深入,互联网人的局限进一步暴露,不懂工业机理,不懂领域知识。一个项目,往往需要AI算法人才、行业专家、行业集成商/方案商等多股力量,才能将工业大脑落地。

这也是很多AI创企遇到的问题,以至于对行业理解越多,越充满敬畏之心。



阿里云的一个转变是,将「 专家知识库」纳入核心技术版图,更加重视行业专家的力量,将传统机理与数理结合。

数据中台,是阿里云工业大脑的核心能力之一。在落地钢铁、水泥、化工等不同领域的过程中,他们也在深化对于工业数据中台的认知。



阿里云工业大脑首席解决方案架构师丰融称, 数据中台最核心的部分是「中间层」,今天数据中台能不能做成,很大程度取决于中间层数据的治理是否合理,是否足够完善,能否支撑上面的业务体系。

目前工业领域的现状是,企业内部数据往往割裂成「孤岛」,直接使用容易变成「数据烟囱」,数据治理尤为重要。

「只有中间层搭建好,这些跨领域的数据才能碰撞,发生化学反应。」

以某水泥集团为例,它面临的一个主要问题是熟料生产能耗高。在水泥行业,能耗成本约占生产经营成本的60%,其中主要能耗来自电耗和煤耗。

阿里云通过工业大脑来托管水泥产线控制,通过模型来推荐相关指标参数,相比人工更稳定、合理性更高。目前工业大脑可将吨熟料煤耗降低0.64%,将熟料工序电耗降低1.23%。对于水泥企业而言,任何一个点的提升,一年都可以节省数百万成本。

丰融称,目前工业大脑已经托管了水泥产线90%以上的控制场景,客户反馈,工业大脑基本达到中级操作员水平。

疫情期间,招工难、人工紧缺之下,AI工业自动化可谓正当时。而随着复工复产,如何优化运营,进行智能供应链决策同样重要。

杉数科技联合创始人&CPO王曦称,企业在做供应链决策时,往往存在4个问题:

看不清,难以看懂市场需求的波动性;靠人工,一方面靠人工做各类生产/销售计划,另一方面针对现有软件给出的不合理结果,需要手动调整;效果差,订单满足率、生产成本、仓储成本等难以优化;难应变,需求端变化、产能端变化、接单插单、转产等运营问题,难以应变。



针对这些问题,杉数科技推出智能供应链决策平台,来辅助企业的生产计划、调度计划、销售计划等业务决策。其核心技术是依托运筹学和机器学习等搭建的杉数优化求解器(COPT)。

以某ICT行业巨头为例,原来单工厂、不透明的计划排产系统难以满足业务需求,面临工厂间协同生产效率低下的问题。

它有数十个工厂,超过10万个零部件半成品,需要做一个28天 10周的订单排程与需求预测计划,这中间存在上亿种可能性,千万级限制条件。

杉数为其打造一个最优生产计划,可详细到每一个零部件加工指令,同时包括原材料到货指令、建议采购计划与异常分析、预警等。

最终使客户的订单满足率提升20%,产能损失率降低30%,人工干预降低70%,带来生产端资源池的盘活,效率较大提升。

针对机器决策,王曦也谈道, 智能决策的目的不是替代人工,而是一个决策辅助工具,它要把人们从那些容易出错,无法全局寻优的工作中解放出来。

针对预测、分类问题,人类的先验知识非常有价值,模型不一定准确,因为数据驱动的预测,本质只能解决历史数据规律的最大化挖掘,但历史数据不代表未来。

而决策建议,当我们给定约束,比如产能、订单、原材料、库存等,可以让机器去最优化一些目标。人可以找到一个合理解,但未必是最优解,这正是机器的价值。

来自阿里云、库柏特科技、阿丘科技、杉数科技等企业专家进行的深度产业分享视频;在「机器之造」公众号后台回复「PPT」,即可 获得嘉宾演讲PPT。

https://space.bilibili.com/73414 ... b_765f7570696e666f.

声明:该文观点仅代表作者本人,搜狐号系信息发布平台,搜狐仅提供信息存储空间服务。
本帖最近评分记录
  • a59159a 金币 +8 感谢分享,论坛有您更精彩! 2020-4-16 22:42

TOP

0
所以说ai不仅要跟人打游戏,还要开挂打?我建议这个ai命名叫做伞兵一号

TOP

当前时区 GMT+8, 现在时间是 2025-3-17 13:06